Die Struktur der Kupfer-Vanadiumbronze Cu_{0.261}V₂O₅: Eine Verfeinerung

VON KATSUO KATO, EIJI TAKAYAMA-MUROMACHI UND YASUSHI KANKE

Mukizaishitsu Kenkyusho,* 1-1 Namiki, Tsukuba-shi, Ibaraki-ken 305, Japan

(Eingegangen am 28. November 1988; angenommen am 27. Februar 1989)

Abstract. $M_r = 198.47$, monoclinic, C2/m, a = 15.2403 (2), b = 3.6145 (1), c = 10.1009 (2) Å, $\beta = 107.250$ (1)°, V = 531.40 (2) Å³, Z = 6, $D_x = 3.721$ Mg m⁻³, λ (Cu $K\alpha_{1,2}$) = 1.540562, 1.544390 Å for lattice parameters, λ (Mo $K\overline{\alpha}$) = 0.71073 Å for intensity measurement, $\mu = 6.53$ mm⁻¹, F(000) = 561.41, T = 296 K, final R = 0.028 for 2992 unique observed reflections. The VO₅ pyramids and the VO₆ octahedra are joined by edge sharing to form a layer parallel to (100) of composition V₃O₈. The layer is connected on both sides through a common VO₆ corner to its neighbours. The Cu ions are accommodated in tunnels between the V₃O₈ layers, and are surrounded by five O atoms.

Einleitung. Die Kristallstruktur der Kupfer-Vanadiumbronze $Cu_x V_2 O_5$ wurde zum ersten Mal von Galy, Lavaud, Casalot & Hagenmuller (1970) eingehend untersucht. Danach kristallisiert die Verbindung monoklin in der Raumgruppe Cm, während das Na V_2O_5 die Symmetrie C2/*m* aufweist (Wadsley, 1955). Die V- und die O-Atome liegen in der Spiegelebene von Cm. die Cu⁺-Ionen sind jedoch in den allgemeinen Punktlagen statistisch verteilt. Beide Verbindungen besitzen im wesentlichen das gleiche Vanadat-Gerüst. Die Cu⁺- bzw. die Na⁺-Ionen sind in den Kanälen untergebracht, welche die O-Atome der freien V-O-Bindungen begrenzen; ihre Koordinationssphären sind jedoch verschieden.

Im Rahmen unserer Arbeiten über die Phasengleichgewichte im Dreistoffsystem CuV₂O₅-V₂O₄-V₂O₅ (Kanke, Takayama-Muromachi & Kato, 1989) haben wir auch Einkristalle von Cu_xV₂O₅ hergestellt und röntgenographisch untersucht. Die Ergebnisse der Strukturverfeinerung stimmen in großen und ganzen mit dem Modell von Galy et al. (1970) überein. Da sie iedoch in einigen wichtigen Punkten davon abweichen, sollen sie im folgenden kurz beschrieben werden. Cu_xV₂O₅ stellt einen Vertreter der homologen Reihe der Kupfer-Vanadiumbronzen $Cu_x V_{6n} O_{15n-m}$ ($m \le n$) dar. Über die Strukturbestimmung eines anderen Vertreters Cu_xV₁₂O₂₉ ist veröffentlicht anderswo (Kato, Takayama-Muromachi & Kanke, 1989).

0108-2701/89/121845-03\$03.00

Experimentelles. Einkristalle wurden aus einer Schmelze nach dem Bridgman-Verfahren hergestellt. wobei sie durch Oxydation aus der Ausgangssubstanz Cu_{1,2}V₁₂O₂₉ als Cu_xV₂O₅ kristallisierten. Der Wert von x läßt sich aus einer Beziehung zwischen xund dem monoklinen Winkel β bestimmen, er betrug x = 0.261. Für Intensitätsmessungen wurde ein Kristall mit den Abmessungen $0.08 \times 0.14 \times$ 0,43 mm verwandt. Die Bestimmung der Gitterparameter erfolgte aus 2 θ -Werten (2 θ > 90°) von 82 h0lund 36 hk0-Reflexen, gemessen auf Rückstrahl-Weißenbergaufnahmen mit 57,3 mm Filmradius. Von 6779 Reflexen mit $-34 \le h \le 34$, $0 \le k \le 8$, Bereich $(\sin\theta)/\lambda \le 1.124 \text{ Å}^{-1}$ $-22 \le l \le 22$ im wurden die Intensitäten auf einem Einkristalldiffraktometer AFC-3 der Fa. Rigaku gemessen (ω-Scan für $2\theta < 30^\circ$, $\omega/2\theta$ -Scan für $2\theta \ge 30^\circ$, Scan-Breite $\Delta \omega =$ $1.2^{\circ} + 0.5^{\circ} \tan \theta$, Scan-Geschwindigkeit $2^{\circ} \min^{-1}$). Die maximale Korrektur für F auf Intensitätsabnahme des Primärstrahls betrug 1,043. Insgesamt wurden 5759 Reflexe mit $I > \sigma(I)$ gemessen, 1020 Reflexe gelten als unbeobachtet und symmetrisch unabhängig waren schließlich 2992 Reflexe mit einem $R_{\rm int} = 0.012$ bezüglich F. Nach Anwendung einer rechnerischen Absorptionskorrektur lag der Korrekturfaktor für F zwischen 1,201 und 1,556.

Anfangskoordinaten für V und O wurden dem bekannten Modell entnommen und die Cu-Lagen in Differenz-Fouriersynthesen lokalisiert. Verfeinert wurde F nach der Methode der kleinsten Quadrate mit $\sigma^{-2}(F)$ als Gewicht. Werte für Atomformfaktoren für neutrale Atome und für die Dispersionskorrektur wurden den International Tables for X-ray Crystallography (1974) entnommen. Eine Extinktions-korrektur wurde in Anlehnung an Zachariasen (1967, 1968) und Becker & Coppens (1974, 1975) unter Verwendung folgender vereinfachter Formel durchgeführt:

$$F_c = sF[(1 + g\overline{T}F^2/\sin 2\theta)^{-1/2} + \cos^2 2\theta_M \cos^2 2\theta (1 + g\overline{T}F^2\cos^2 2\theta/\sin 2\theta)^{-1/2}]^{1/2} \times (1 + \cos^2 2\theta_M \cos^2 2\theta)^{-1/2}$$

mit $2\theta_M = 12,17^\circ$ als Glanzwinkel des Graphit-Monochromators. Mit normalen anisotropen Temperaturfaktoren wurde erreicht: R = 0,036, AIC = 20752. Um die Cu-Lage herum wurden kleine

© 1989 International Union of Crystallography

^{*} Staatliches Institut für Anorganische Materialforschung.

Maxima und Minima der Elektronendichte-Differenz beobachtet [Fig. 1(a)], $\Delta \rho = -6,2$ bis $6,0 \text{ e } \text{Å}^{-3}$. Annahme einer anharmonischen thermischen Schwingung* für das Cu-Atom führte zu den Ergebnissen: Angleichungsfaktor s = 4,689 (5), freier Parameter für Extinktionskorrektur g = 1,06 (2) $\times 10^{-4} \text{ mm}^{-1}$, mit der Absorption gewichteter mittlerer Strahlengang im Kristall $\overline{T} = 0,058$ bis 0,133 mm, Korrekturfaktor $\geq 0,726$. Max. Δ/σ im letzten Zyklus 0,01 bei Tempraturfaktorkoeffizienten für das Cu-Atom. R = 0,028, wR = 0.024, S = 3,31, AIC = 18827, $\Delta \rho = -3,4$ bis 2,9 e Å⁻³ [Fig. 1(b)].

Näheres über AIC (Akaike, 1973) ist im vorhergehenden Artikel (Kato et al., 1989) gegeben. Benutzte Rechenprogramme: RSLC3 des UNICSII-Systems (Sakurai, 1967) zur Bestimmung der Gitterparameter, ORFFE (Busing, Martin & Levy, 1964) für die Berechnung der Abstände, ORTEPII (Johnson, 1976) zur Anfertigung der Strukturbilder, und eigene unveröffentlichte Programme.

Diskussion. Aus dem N(z)-Test (Howells, Phillips & Rogers, 1950) mit den gesamten dreidimensionalen Intensitätsdaten einschließlich der unbeobachteten Reflexe ergab sich eine Kurve, die mit der theoretischen Kurve für den zentrosymmetrischen Fall sehr gut übereinstimmte. Der erste Verfeinerungsversuch erfolgte somit unter Annahme der zentrosymmetrischen Raumgruppe C2/m. Das mit normalen

* Die Liste der Strukturamplituden und die Tabelle der anisotropen bzw. anharmonischen Temperaturfaktoren sind bei der British Library Document Supply Centre (Supplementary Publication No. SUP 52041: 19 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Elektronendichte-Differenz um die Cu(1)-Lage im Cu_{0.261}V₂O₅. Höhenlinienabstand 1 e Å⁻³; ausgezogene Linie für positive, gestrichelte Linie für negative Niveaus; Höhenlinie des Null-Niveaus nicht gezeichnet. Koordinaten der Eckpunkte in Einheiten der Zellkonstanten: *P* (0,4988, $-\frac{1}{2}$, 0,3831), *Q* (0,5628, $-\frac{1}{2}$, 0,3369), *R* (0,5628, $\frac{1}{2}$, 0,3369). Die Cu(1)-Lage ist etwa in der Mitte jeder Teilfigur. (a) Nach der Verfeinerung mit einem anisotropen Temperaturfaktor. (b) Nach der Verfeinerung mit einem anharmonischen Temperaturfaktor.

Tabelle 1. Lageparameter für $Cu_{0,261}V_2O_5$, mit Standardabweichungen in Klammern, y = 0 für alle Atome

$$U_{\rm aq} = \frac{1}{6\pi^2} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$$

Besetzungs

	wahrscheinlichkeit	x	Z	$U_{\rm \ddot{a}q}({\rm \AA^2 \times 10^2})$
V(1)		0,33494 (2)	0,09616 (2)	0,635 (4)
V(2)		0,11400 (2)	0,11994 (2)	0,785 (4)
V(3)		0,28681 (2)	0,40681 (2)	0,929 (4)
O(1)		0,0	0,0	1,14 (3)
O(2)		0,81322 (7)	0,05073 (10)	0,86 (2)
O(3)		0,63291 (7)	0,08138 (10)	0,753 (14)
O(4)		0,43403 (8)	0,20721 (11)	1,39 (2)
O(5)		0,26079 (7)	0,22154 (10)	0,81 (2)
O(6)		0,09979 (8)	0,27175 (11)	1,54 (2)
O(7)		0,24520 (9)	0,57583 (11)	1,30 (2)
O(8)		0,39622 (9)	0,46063 (13)	2,11 (3)
Cu(1)) 0,3915	0,52952 (10)	0,36100 (14)	6,75 (7)

Tabelle 2. Ausgewählte interatomare Abstände (Å) mit Standardabweichungen in Klammern

V (1)	O(4)	1,592 (1)	—O(2 ⁱ)	1,8698 (3)	—O(2 ⁱⁱ)	1,8698 (3)
	O(5)	1,931 (1)	—O(3 ⁱⁱⁱ)	1,994 (1)	—O(2 ⁱⁱⁱ)	2,305 (1)
V(2)	O(6)	1,611 (1)	O(1)	1,7994 (3)	O(3 ⁱ)	1,8888 (3)
	O(3 ⁱⁱ)	1,8888 (3)	O(5)	2,167 (1)	O(2 ⁱⁱⁱ)	2,310 (1)
V(3)	O(8) O(7 ^v)	1,593 (1) 1,8936 (4)	—O(5) —O(7)	1,794 (1) 1,990 (1)	—O(7 ^{iv})	1,8936 (4)
Cu(1))—O(4) —O(6 ^{viii})	1,786 (2) 2,408 (1)	O(8 ^{vi}) O(8)	1,821 (2) 2,520 (2)	—O(6 ^{vii})	2,408 (1)

Symmetrieoperationen: (i) $-\frac{1}{2} + x, \frac{1}{2} + y, z;$ (ii) $-\frac{1}{2} + x, -\frac{1}{2} + y, z;$ (iii) 1 - x, -y, -z; (iv) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z;$ (v) $\frac{1}{2} - x, -\frac{1}{2} - y, 1 - z;$ (vi) 1 - x, -y, 1 - z; (vii) $\frac{1}{2} + x, \frac{1}{2} + y, z;$ (viii) $\frac{1}{2} + x, -\frac{1}{2} + y, z.$

Fig. 2. Projektion der Cu_{0.261}V₂O₅-Struktur parallel [010].

anisotropen Temperaturfaktoren erzielte Zwischenergebnis mit R = 0,036 war bereits so gut, daß auf weitere Verfeinerungsversuche in Cm oder C2 von vornherein verzichtet werden dürfte. Eine Differenz-Fouriersynthese Fig. l(a) wies jedoch darauf hin, daß für das Cu-Atom ein anharmonischer Charakter der thermischen Schwingung in Betracht geazogen werden mußte. Der Temperaturfaktor des Cu-Atoms wurde daher wie folgt umformuliert (Johnson, 1969; International Tables for X-ray Crystallography, 1974) und die freien Koeffizienten zusammen mit anderen Parametern verfeinert:

$$\exp\bigg(-\sum_{p,q=1}^{3}\beta^{pq}h_{p}h_{q}-i\sum_{p,q,r=1}^{3}c^{pqr}h_{p}h_{q}h_{r} +\sum_{p,q,r,s=1}^{3}d^{pqrs}h_{p}h_{q}h_{r}h_{s}\bigg).$$

Die große Differenz des AIC zeigt, daß dieses Modell dem früheren gegenüber eine Verbesserung darstellt. Die zur Kontrolle berechnete Differenz-Fouriersynthese offenbart jedoch, daß das Verhalten des Cu-Atoms durch den eben aufgeführten Temperaturfaktor nicht vollständig auszugleichen ist. Ähnlich verhält sich auch das Cu-Atom in $Cu_xV_{12}O_{29}$ (Kato *et al.*, 1989).

Die verfeinerten Lageparameter sowie die interatomaren Abstände sind in den Tabellen 1 und 2 aufgeführt. Fig. 2 zeigt die projektion der Struktur parallel [010]. Alle Atome liegen auf der Spiegelebene der Raumgruppe C2/m. Die VO₆-Oktaeder und die VO₅-Pyramiden sind durch gemeinsame Kanten miteinander verknüpft und bilden eine Schicht parallel (100), welche gemeinsame Baueinheit der homologen Strukturen von $Cu_x V_{6n}O_{15n-m}$ $(m \le n)$ darstellt. Die vorliegende Verbindung ist als ein Vertreter dieser Struktur-Reihe dadurch gekennzeichnet, daß die ebengenannte Schicht beidseitig über ein Brüken-Sauerstoffatom mit den benachbarten Schichten verbunden ist. Das Cu-Atom ist annähernd trigonal-dipyramidal von fünf O-Atomen umgeben (Fig. 3).

Literatur

- AKAIKE, H. (1973). Second International Symposium on Information Theory, herausgegeben von B. N. PETROV & F. CSAKI, S. 267–281. Budapest: Akademiai Kiado.
- BECKER, P. J. & COPPENS, P. (1974). Acta Cryst. A30, 129-147, 148-153.
- BECKER, P. J. & COPPENS, P. (1975). Acta Cryst. A31, 417-425.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Bericht ORNL-TM-306. Oak Ridge National Laboratory, Oak Ridge, Tennessee, VStA.
- GALY, J., LAVAUD, D., CASALOT, A. & HAGENMULLER, P. (1970). J. Solid State Chem. 2, 531-543.
- HOWELLS, E. R., PHILLIPS, D. C. & ROGERS, D. (1950). Acta Cryst. 3, 210-214.
- International Tables for X-ray Crystallography (1974). Bd. IV. Birmingham: Kynoch Press. (Gegenwärtiger Verteiler Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1969). Acta Cryst. A25, 187-194.
- JOHNSON, C. K. (1976). ORTEPII. Bericht ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, VStA.
- KANKE, Y., TAKAYAMA-MUROMACHI, E. & KATO, K. (1989). J. Solid State Chem. Im Druck.
- KATO, K., TAKAYAMA-MUROMACHI, E. & KANKE, Y. (1989). Acta Cryst. C45, 1841–1844.
- SAKURAI, T. (1967). Herausgeber. UNICSII. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
- WADSLEY, A. D. (1955). Acta Cryst. 8, 695-701.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1989). C45, 1847-1853

Structures of Nonadecasulfur(2+) Bis[hexafluoroantimonate(1-)] S₁₉(SbF₆)₂, Octasulfur(2+) Di-μ-fluoro-dodecafluorotriantimonate(1-) Hexafluoroantimonate(1-) S₈(Sb₃F₁₄)(SbF₆), and Tetrasulfur(2+) Di-μ-fluoro-difluorodiantimony(2+) μ-Fluoro-tetrafluorodiantimony(1+) Pentakis[hexafluoroantimonate(1-)] S₄(Sb₂F₄)(Sb₂F₅)(SbF₆)₅

BY ROMOLO FAGGIANI, RONALD J. GILLESPIE, JEFFERY F. SAWYER AND JOHN E. VEKRIS Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

(Received 28 November 1988; accepted 15 March 1989)

Abstract. $S_{19}(SbF_6)_2$ (1), $M_r = 1080.6$, monoclinic, $P2_1/a$, a = 15.423 (5), b = 13.288 (4), c = 14.408 (2) Å, $\beta = 105.33$ (2)°, V = 2848 (1) Å³, Z = 4, $D_x = 2.52$ g cm⁻³, Mo K α radiation ($\lambda = 0.71069$ Å),

 $\mu = 33.3 \text{ cm}^{-1}$, F(000) = 2056, T = 298 K, R = 0.045for 2227 observed $[I > 3\sigma(I)]$ reflections. S₈(Sb₃F₁₄)(SbF₆) (2), $M_r = 1123.3$, orthorhombic, *Pbca*, a = 15.140 (3), b = 17.402 (4), c = 17.309 (4) Å,

0108-2701/89/121847-07\$03.00 © 1989 International Union of Crystallography